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Mathematies 1s wild

- Analysis: topologies and maps can be involved

— complicated sets: Cantor sets, ...

— complicated functions:

f(z) = { (1) x rational f(z) = sin(1/2)

x irrational

common feature: no proper graphical representation

= Logic: Godel’s first incompleteness theorem
— there are statements that are undecidable

What is a good Tameness Principle?
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Finiteness as a tameness principle?

~ Longstanding question: Is number of distinct effective theories from string
theory below fixed cut-off finite? e.g. [Douglas ‘03] [Acharya,Douglas "06]

much recent activity: finiteness of spectra, ranks of gauge groups

| Adams,DeWolfe, Taylor] [Kim,Shiu, Vafa] [Kim, Tarazi, Vafa] [Cvetic,Dierigl,Lin,Zang]
Dierigl, Heckman] [Font,Fraiman,Grana,Nunez,DeFreitas] [Hamada, Vafa]
[Taylor etal],[Kim,Shiu, Vafa],[Lee, Weigand],[ Tarazi,Vafa] [Hamada,Montero, Vafa,Valenzuela]

~ Type lIB/F-theory flux compactifications with self-dual flux this is a
theorem (assume ﬁnitely many CY) [Bakker, TG,Schnell, Tsimerman]

Tameness principle: demand that theories are formulated
within “Tame geometry” or ‘o-minimal geometry’

(needed in the proof of [Bakker,TG,Schnell, Tsimerman])
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Rough tameness statements

(1) Observe that effective theories derived from string
theory that are valid below a fixed finite energy scale
have tame coupling functions, field spaces, and
parameter spaces.

(2) Tame effective theories/QFTs remain tame when
including perturbative corrections up to a fixed loop level.
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Effective theories

~ Effective theory:

L= 2R~ gij(6, ) Dyt D*¢F — fop (9 Nx(ES, (FOY) — V(9. X) + ...

L

Coupling functions depend on: parameters A € P, scalar fields ¢ € M
& P o« M {\ep} Pparameter space and field space changing over it

number of fields, vevs of heavy fields, fluxes, topological data
— possibly discrete or with many components

special ‘tame’ set special ‘tame’ function

T T
Tameness statement: P X Mx and  Gij, faB, V, - -.
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A mathematical structure with finiteness

~ Geometry: develop a mathematical framework for geometers:

» Grothendieck’s dream of a tame topology [Esquisse d’un programme]
+ remove pathologies that can occur in ‘ordinary topology’

~ Logic: theory of o-minimal structures comes from model theory

~ built theory with polynomial equalities and inequalities over IR
(with ordering “>") that has only decidable statements [Tarski]

» Are there interesting extensions of this simplest structure?

~ Resulting picture: — o-minimal structures define a tame topology

— give a generalization of real algebraic geometry

— strong finiteness properties intro book [van den Dries]

Recent lectures: Jacob Tsimerman (2021 Princeton lectures, 2022 Fields institute)
6
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Tame topology: o-mimimal structures

-~ Basic idea: specify collection S, of tame sets 4 C R"
and allowed tame functions f : R"” — R™

— tame manifolds, tame bundles, ... a whole tame geometry

~ Sets should define “a structure’ (logic):

> finite unions, intersections, complements and products of tame sets
are tame sets  (logical operation... ‘and’, ‘or’, etc.)

> linear projections of tame sets should be tame sets (‘3’)

> sets defined by polynomials included (algebraic sets)

Tameness assumption: tame setsin R

S oo S e o —— — finitely many points/intervals

» infinitely long intervals

< » whole real line
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Tame functions

-~ tame functions: are those whose graph is a tame set
Non-Example: Sin(x), r e R
is never a tame function

R L g 7

Example: polynomial function

/ N 7 N N T

llheorem: tame | : R — R split IR into finite number
of intervals: f is either
constant, or monotonic

/ \ and continuous in

PR h 5
< > | < > < » €ach open interval

(1) finitely many minima and maxima; (2) tame tail to infinity



Examples of o-minimal structures

-~ Note: there is no unique choice of o-minimal structure on R":

+examples are obtained by stating which functions are allowed
to generate the sets — non-trivial



Examples of o-minimal structures

-~ Note: there is no unique choice of o-minimal structure on R":

+examples are obtained by stating which functions are allowed
to generate the sets — non-trivial

=~ Some important examples:

structure generated by real polynomials: Ryg Plz,,.. =)l



Examples of o-minimal structures

-~ Note: there is no unique choice of o-minimal structure on R":

+examples are obtained by stating which functions are allowed
to generate the sets — non-trivial

=~ Some important examples:

structure generated by real polynomials: Ryg Plz,,.. =)l

Ralg plus exponential function: Rexp Plry . 1.’ e =
| Wilkie "96]



Examples of o-minimal structures

-~ Note: there is no unique choice of o-minimal structure on R":

+examples are obtained by stating which functions are allowed
to generate the sets — non-trivial

=~ Some important examples:

structure generated by real polynomials: Ryg Plz,,.. =)l

I1

Ralg plus exponential function: Rexp Plry . 1.’ e =
[ Wilkie "96]

Rexp plus restricted real analytic functions: = Ryp exp [van den Dries,
Miller "94]



Examples of o-minimal structures

-~ Note: there is no unique choice of o-minimal structure on R":

+examples are obtained by stating which functions are allowed
to generate the sets — non-trivial

~ Sets in Ryp exp given by finitely many equalities and inequalities:

B, @, e file) o 0 =0

Bl r.c . e fale). o o o(r)) =0



Examples of o-minimal structures

-~ Note: there is no unique choice of o-minimal structure on R":

+examples are obtained by stating which functions are allowed
to generate the sets — non-trivial

~ Sets in Ryp exp given by finitely many equalities and inequalities:

PGS "', ... c", fi(z),...,fn(x) =0

P, ", ....c"", fi(x),..., fm(z)) >0

polynomial



Examples of o-minimal structures

-~ Note: there is no unique choice of o-minimal structure on R":

+examples are obtained by stating which functions are allowed
to generate the sets — non-trivial

~ Sets in Ryp exp given by finitely many equalities and inequalities:

PGy sz, T . [1(1),..., fn(x) =0

Pz, EE (1), ..., fm(z)) >0

polynomial = exponential



Examples of o-minimal structures

-~ Note: there is no unique choice of o-minimal structure on R":

+examples are obtained by stating which functions are allowed
to generate the sets — non-trivial

~ Sets in Ryp exp given by finitely many equalities and inequalities:

Pp(x1,...,z, 06 s @ EERESE———_ — ()

PiZ1, .., T, B " I, - ()

polynomial = exponential restricted analytic



Examples of o-minimal structures

-~ Note: there is no unique choice of o-minimal structure on R":

+examples are obtained by stating which functions are allowed
to generate the sets — non-trivial

~ Sets in Ryp exp given by finitely many equalities and inequalities:

Pp(x1,...,z, 06 s @ EERESE———_ — ()

PiZ1, .., T, B " I, - ()

polynomial = exponential restricted analytic

needed for tameness
of complex exponential:

e = e"(cos(¢) +isin(¢p)) 0<op<c



Examples of o-minimal structures

~ Note: there is no unique choice of o-minimal structure on ke

+examples are obtained by stating which functions are allowed
to generate the sets — non-trivial

~ Sets in Ryp exp given by finitely many equalities and inequalities:

Pp(x1,...,z, 06 s @ EERESE———_ — ()

PiZ1, .., T, B " I, - ()

polynomial = exponential restricted analytic

not tame in Ryp exp: I'(x) on (0,00); ¢(z) on (1,00); error function
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There 1s much more to say:

~ Higher-dimensional tame functions ;
N *
and sets well understood /i,\’\\ —
exists finite cell decomposition B — /\_/—\
I\
\; | |

- Tameness used in many recent proofs of deep mathematics conjectures:

Ax-Schanuel conjecture for Hodge structures [Bakker, Tsimerman "17]
Griffiths’ conjecture [Bakker,Brunebarbe, Tsimerman ‘18]

André-Oort conjecture [Pila,Shankar, Tsimerman ‘21]

— very active field connecting logic, number theory, and geometry

10
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Tameness at work

=~ Tameness statement: field space M tame manifold
potential V' (¢1, ¢2) tame function

> Integrate out My = {g% = O} N M — intersection of tame spaces
h : ;
apad V(d1,92) = V((#1),92) — projection of tame function

— tameness classically preserved when lowering cut-off

Tameness preserved at quantum level?

-~ Rule out ‘wild” potentials:

consider potential s.t. vacuum locus is
an infinitely long spiral to the center

— cannot be tame, V not definable
MV&C

linear project with infinitely many points
11



Tameness at work

=~ Tameness statement: field space M tame manifold

potential V' (¢1, ¢2) tame function

= Integrate out My, = {g% - O} N M — intersection of definable spaces
: 1
heavy ¢1: V(p1,P2) = V({(¢1),92) —> projection of definable function

— tameness classically preserved when lowering cut-off

-~ Rule out ‘wild” potentials:
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Tameness at work

=~ Tameness statement: field space M tame manifold
potential V' (¢1, ¢2) tame function

= Integrate out My, = {% - O} N M — intersection of definable spaces
: 1
heavy ¢1: V(p1,P2) = V({(¢1),92) —> projection of definable function

— tameness classically preserved when lowering cut-off

-~ Rule out ‘wild” potentials:

it infinitely many vacua not

//\WN compatible with tameness

many functions do not appear: V(¢) = sin(¢™ ") V(g) = ¢°sin(¢™ 1)
— no accumulation points of vacua discussed by [Acharya,Douglas]



Tameness at work

=~ Tameness statement: field space M tame manifold
potential V' (¢1, ¢2) tame function

= Integrate out My, = {g% - O} N M — intersection of definable spaces
: 1
heavy ¢1: V(p1,P2) = V({(¢1),92) —> projection of definable function

— tameness classically preserved when lowering cut-off

-~ Rule out ‘wild” potentials:

vt infinitely many vacua not

//\W/\m/’ compatible with tameness

recent suggestion by [Tachikawa] of QFT with scalar potential

and undecidable statements is not tame .



Tameness Conjecture
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A new swampland conjecture

[l 2

Tameness conjecture:

All effective theories valid below a fixed finite energy

cut-off scale tha

gravity are labe
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must have scalar field spaces and coupling functions that
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A new swampland conjecture

e ot

Tameness con;j

All effective t

cut-off scale t

-

gravity are la

e

(14’

ecture;

neories valid below a fixed finite energy

- can be consistently coupled to quantum

led by a tame parameter space and

must have scalar field spaces and coupling functions that

are tame in an o-minimal structure.

Refined version:

The relevant o-minimal structure is Ry, exp-
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Evidence for Tameness:
Supersymmetry + Strings

14
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~ Supergravity theories with N>2 supersymmetry in Dz4:

(1) scalar field spaces:
i F\G / K I'C Gy is discrete symmetry group that is gauged
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Tameness and supersymmetry: N > 2

~ Supergravity theories with N>2 supersymmetry in Dz4:

(1) scalar field spaces:
i F\G / K I'C Gy is discrete symmetry group that is gauged

= tame in [Ry)q if I sufficiently large (‘algebraic’, e.g. I' = Gz)
seminal paper by [Bakker,Klingler,Tsimerman] "18

(2) coupling functions (2-derivative action) — tame in Rye C Ran exp
|TG,van Vliet] to appear

(3) parameter spaces: are they tame?

check: sectrum/group ranks (e.g. choices for I', G ) are finite in string
compactifications — discrete infinite sets are never definable

15
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Tameness 1n Compactiﬁcations: N=2

~ Less supersymmetry: N=2 compactifications on Calabi-Yau threefolds

~ Field space: complex structure deformations M

Recall: Kahler metric from: K(z) = —log / QAQ - derived from
- period integrals

) ling:
gauge coupling: Nj;(2) Hi:/ 0

~ Also recently shown:

(a) Hodge star on H”(Yp, C), period map are tame in Ryp exp
|Bakker,Klingler, Tsimerman] "18
(b) period integrals themselves are tame in Ran,exp
|[Bakker,Mullane] "22 + [Bakker, Tsimerman] to appear
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~ Field space: complex structure deformations M

Recall: Kahler metric from: K(z) = —log / QAQ - derived from
- period integrals

) ling:
gauge coupling: Nj;(2) Hi:/ 0

- Kahler metric/gauge coupling function on M — tame maps in Ry exp
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Tameness 1n Compactiﬁcations: N=2

~ Less supersymmetry: N=2 compactifications on Calabi-Yau threefolds

~ Field space: complex structure deformations M

Recall: Kahler metric from: K(z) = —log / QAQ - derived from
- period integrals

=2 ling:
gauge coupling: N7 ;(2) - / .
a
- Kahler metric/gauge coupling function on M — tame maps in Ry exp

~ Note: period integrals have ‘parameters’ (e.g. mirror intersection numbers)

— non-trivial P: would need finiteness of Calabi-Yau manifolds

16
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= Involved: period integrals are complicated functions (e.g. hypergeom.)
— carefully ‘mod out’ monodromy symmetries

[l(ze*™) = T - Ti(2) L g

However: quantities like the central charge Z(z, Q) = eX/2Q,IT' not T-invariant
— not tame in (2, @): towers of BPS states of mass|Z(z, Q)| (not part of EFT)
— relevant to Distance conjecture [TG,Palti, Valenzuela]
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= Involved: period integrals are complicated functions (e.g. hypergeom.)
— carefully ‘mod out’ monodromy symmetries

[l(ze*™) = T - Ti(2) L g

However: quantities like the central charge Z(z, Q) = eX/2Q,IT' not T-invariant
— not tame in (2, @): towers of BPS states of mass|Z(z, Q)| (not part of EFT)
— relevant to Distance conjecture [TG,Palti, Valenzuela]

Tameness + Distance conjecture = & [TG,Lanza,Li]

— Talk by Stefano Lanza -



Tameness in flux compactifications: N=0,1

= TypellB / F—theory flux compactifications review: [Grana] [Kachru,Douglas] ...

background flux: G4€ H*(Ya,Z) / GiNGy =/
Yy
scalar potential: Ve = C/ (G4 AHe = G4)
Yy

vacuum condition: *G4 = G4 — well-defined set of N=0,1 vacua
with (partially) fixed moduli
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background flux: G4€ H*(Ya,Z) / GiNGy =/
Yy
scalar potential: Ve = C/ (G4 AHe = G4)
Yy

vacuum condition: *G4 = G4 — well-defined set of N=0,1 vacua
with (partially) fixed moduli

~ fix (G4: scalar potential V (z,Z) istame in Ran,exp

—> finitely many minimum loci [Bakker, TG,Schnell, Tsimerman] ‘21
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Tameness in flux compactifications: N=0,1

~ Type IIB/F-theory flux compactifications review: [Grafia] [Kachru,Douglas] ...

background flux: G4€ H*(Ya,Z) / GiNAGy ="/
Yy
scalar potential: Ve = C/ (G4 AHe = G4)
Yy

vacuum condition: *G4 = G4 — well-defined set of N=0,1 vacua
with (partially) fixed moduli

~ G4 asparameter: G4 € P takes value on lattice H*(Yy,Z)
— worst thing for tameness

tadpole helps! — finiteness related to compactness of Y, (gravity)

-~ tameness (and finiteness) of locus of self-dual fluxes now part

of general theorem [Bakker, TG,Schnell, Tsimerman] ‘21
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Evidence for Tameness:
Perturbative QF'T
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Tameness at quantum level

= General local QFT (renormalizable / EFT with cutoff)

independent external momenta P;

¢ -loop amplitude A;(p, m)

masses of particles in the loop 1
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Tameness at quantum level

= General local QFT (renormalizable / EFT with cutoff)

¢ -loop amplitude A;(p, m)

independent external momenta P;

masses of particles in the loop 1

amplitude isamap: A, : 9 x P — [0, 1]
. -

space of momenta parameters: masses, vertices

~ show that maps Ay are tame in R,y exp

[Douglas, TG,Schlechter]

In preparation

— Talk by Lorenz Schlechter
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Tameness at quantum level

~ amplitudes are composed of finitely many Feynman integrals

./45 = ‘Z[g,j
J

2
= 17 ceey Ngraphs,f
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Tameness at quantum level

=~ amplitudes are composed of finitely many Feynman integrals

./45 = ‘Z]&j
J)

%

j = 17 SR Ngraphs,é

- Basicidea: Feynman integrals are tame by relating them to period
integrals of some auxiliary compact geometry Y,

9:n><q3%~/\/lgraph ; (pam)HZ

moduli space of Ygraph

Ito,m) = [ (H i’f) (H Dl) I(z) = L 0

gl

review book by [Weinzierl]
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Tameness at quantum level

~ amplitudes are composed of finitely many Feynman integrals

j = 17 SR Ngraphs,é

- Basicidea: Feynman integrals are tame by relating them to period
integrals of some auxiliary compact geometry Y,

= Use: period integrals are tame maps in Rap exp
|[Bakker,Mullane] "22 + [Bakker, Tsimerman] to appear
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Conclusions

- Tame geometry and o-minimal structures are omnipresent in etfective field
theories arising from string theory

= strong finiteness properties

= general enough for non-supersymmetric situations
— a structure for the real world

22



Conclusions

- Tame geometry and o-minimal structures are omnipresent in etfective field
theories arising from string theory

= strong finiteness properties

= general enough for non-supersymmetric situations
— a structure for the real world

= Much non-trivial evidence: e.g. tameness theorem for self-dual fluxes vacua
— proof that vacuum landscape is in Ray, exp

22



Conclusions

- Tame geometry and o-minimal structures are omnipresent in effective field
theories arising from string theory

= strong finiteness properties

= general enough for non-supersymmetric situations
— a structure for the real world

= Much non-trivial evidence: e.g. tameness theorem for self-dual fluxes vacua
— proof that vacuum landscape is in Ray, exp

- n-loop QFT amplitudes are tame: tameness preserved at quantum level

22



Conclusions

- Tame geometry and o-minimal structures are omnipresent in effective field
theories arising from string theory

= strong finiteness properties

= general enough for non-supersymmetric situations
— a structure for the real world

= Much non-trivial evidence: e.g. tameness theorem for self-dual fluxes vacua
— proof that vacuum landscape is in Ray, exp

- n-loop QFT amplitudes are tame: tameness preserved at quantum level

= Combine other conjectures with Tameness Conjecture:

tameness conjecture + distance conjecture [TG, Lanza,Li]

tameness conjecture + swampland conjectures ? [TG,Lanza,van Vliet] in progress
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Thanks!



