The remarkable Tameness of String Effective Actions

Thomas W. Grimm

Utrecht University

Based on:

2112.06995 with Ben Bakker, Christian Schnell, Jacob Tsimerman

2112.08383 Tameness Conjecture

2206.00697 with Stefano Lanza, Chongchuo Li

220n.nnnn with Mike Douglas, Lorenz Schlechter

Introduction

- Analysis: topologies and maps can be involved

- Analysis: topologies and maps can be involved
 - → complicated sets: Cantor sets, ...
 - → complicated functions:

$$f(x) = \begin{cases} 0 & x \text{ rational} \\ 1 & x \text{ irrational} \end{cases}$$

$$f(x) = \sin(1/x)$$

- Analysis: topologies and maps can be involved
 - → complicated sets: Cantor sets, ...
 - → complicated functions:

$$f(x) = \begin{cases} 0 & x \text{ rational} \\ 1 & x \text{ irrational} \end{cases}$$

$$f(x) = \sin(1/x)$$

common feature: no proper graphical representation

- Analysis: topologies and maps can be involved
 - → complicated sets: Cantor sets, ...
 - → complicated functions:

$$f(x) = \begin{cases} 0 & x \text{ rational} \\ 1 & x \text{ irrational} \end{cases}$$

$$f(x) = \sin(1/x)$$

- common feature: no proper graphical representation
- Logic: Gödel's first incompleteness theorem
 - → there are statements that are undecidable

- Analysis: topologies and maps can be involved
 - → complicated sets: Cantor sets, ...
 - → complicated functions:

$$f(x) = \begin{cases} 0 & x \text{ rational} \\ 1 & x \text{ irrational} \end{cases}$$

$$f(x) = \sin(1/x)$$

- common feature: no proper graphical representation
- Logic: Gödel's first incompleteness theorem
 - → there are statements that are undecidable

Physics is more tame, isn't it?

- Analysis: topologies and maps can be involved
 - → complicated sets: Cantor sets, ...
 - → complicated functions:

$$f(x) = \begin{cases} 0 & x \text{ rational} \\ 1 & x \text{ irrational} \end{cases}$$

$$f(x) = \sin(1/x)$$

- common feature: no proper graphical representation
- Logic: Gödel's first incompleteness theorem
 - → there are statements that are undecidable

What is a good Tameness Principle?

Longstanding question: Is number of distinct effective theories from string theory below fixed cut-off finite?
 e.g. [Douglas '03] [Acharya, Douglas '06]

- Longstanding question: Is number of distinct effective theories from string theory below fixed cut-off finite?
 e.g. [Douglas '03] [Acharya, Douglas '06]
 - much recent activity: finiteness of spectra, ranks of gauge groups

[Adams, DeWolfe, Taylor] [Kim, Shiu, Vafa] [Kim, Tarazi, Vafa] [Cvetic, Dierigl, Lin, Zang] [Dierigl, Heckman] [Font, Fraiman, Grana, Nunez, DeFreitas] [Hamada, Vafa] [Taylor etal], [Kim, Shiu, Vafa], [Lee, Weigand], [Tarazi, Vafa] [Hamada, Montero, Vafa, Valenzuela]

- Longstanding question: Is number of distinct effective theories from string theory below fixed cut-off finite?
 e.g. [Douglas '03] [Acharya, Douglas '06]
 - much recent activity: finiteness of spectra, ranks of gauge groups

```
[Adams,DeWolfe,Taylor] [Kim,Shiu,Vafa] [Kim,Tarazi,Vafa] [Cvetic,Dierigl,Lin,Zang] [Dierigl,Heckman] [Font,Fraiman,Grana,Nunez,DeFreitas] [Hamada,Vafa] [Taylor etal],[Kim,Shiu,Vafa],[Lee,Weigand],[Tarazi,Vafa] [Hamada,Montero,Vafa,Valenzuela]
```

 Type IIB/F-theory flux compactifications with self-dual flux this is a theorem (assume finitely many CY)
 [Bakker,TG,Schnell,Tsimerman]

- Longstanding question: Is number of distinct effective theories from string theory below fixed cut-off finite?
 e.g. [Douglas '03] [Acharya, Douglas '06]
 - · much recent activity: finiteness of spectra, ranks of gauge groups

```
[Adams,DeWolfe,Taylor] [Kim,Shiu,Vafa] [Kim,Tarazi,Vafa] [Cvetic,Dierigl,Lin,Zang] [Dierigl,Heckman] [Font,Fraiman,Grana,Nunez,DeFreitas] [Hamada,Vafa] [Taylor etal],[Kim,Shiu,Vafa],[Lee,Weigand],[Tarazi,Vafa] [Hamada,Montero,Vafa,Valenzuela]
```

 Type IIB/F-theory flux compactifications with self-dual flux this is a theorem (assume finitely many CY)
 [Bakker,TG,Schnell,Tsimerman]

Finiteness criterion seems to be a yes/no-criterion: Can we turn finiteness into a structural criterion?

- Longstanding question: Is number of distinct effective theories from string theory below fixed cut-off finite?
 e.g. [Douglas '03] [Acharya, Douglas '06]
 - · much recent activity: finiteness of spectra, ranks of gauge groups

```
[Adams,DeWolfe,Taylor] [Kim,Shiu,Vafa] [Kim,Tarazi,Vafa] [Cvetic,Dierigl,Lin,Zang] [Dierigl,Heckman] [Font,Fraiman,Grana,Nunez,DeFreitas] [Hamada,Vafa] [Taylor etal],[Kim,Shiu,Vafa],[Lee,Weigand],[Tarazi,Vafa] [Hamada,Montero,Vafa,Valenzuela]
```

 Type IIB/F-theory flux compactifications with self-dual flux this is a theorem (assume finitely many CY)
 [Bakker,TG,Schnell,Tsimerman]

Tameness principle: demand that theories are formulated within 'Tame geometry' or 'o-minimal geometry'

(needed in the proof of [Bakker, TG, Schnell, Tsimerman])

Rough tameness statements

(1) Observe that effective theories derived from string theory that are valid below a fixed finite energy scale have tame coupling functions, field spaces, and parameter spaces.

Rough tameness statements

(1) Observe that effective theories derived from string theory that are valid below a fixed finite energy scale have tame coupling functions, field spaces, and parameter spaces.

(2) Tame effective theories/QFTs remain tame when including perturbative corrections up to a fixed loop level.

Effective theory:

$$\mathcal{L} = \frac{1}{2}R - g_{ij}(\phi, \lambda) D_{\mu}\phi^{i}D^{\nu}\phi^{j} - f_{\alpha\beta}(\phi, \lambda) \operatorname{tr}(F^{\alpha}_{\mu\nu}(F^{\beta})^{\mu\nu}) - V(\phi, \lambda) + \dots$$

Coupling functions depend on: parameters $\lambda \in \mathcal{P}$, scalar fields $\phi \in \mathcal{M}_{\lambda}$

Effective theory:

$$\mathcal{L} = \frac{1}{2}R - g_{ij}(\phi, \lambda) D_{\mu}\phi^{i}D^{\nu}\phi^{j} - f_{\alpha\beta}(\phi, \lambda) \operatorname{tr}(F^{\alpha}_{\mu\nu}(F^{\beta})^{\mu\nu}) - V(\phi, \lambda) + \dots$$

Coupling functions depend on: parameters $\lambda \in \mathcal{P}$, scalar fields $\phi \in \mathcal{M}_{\lambda}$

o $\mathcal{P} \times \mathcal{M}_{\{\lambda \in \mathcal{P}\}}$ parameter space and field space changing over it

number of fields, vevs of heavy fields, fluxes, topological data → possibly discrete or with many components

Effective theory:

$$\mathcal{L} = \frac{1}{2}R - g_{ij}(\phi, \lambda) D_{\mu}\phi^{i}D^{\nu}\phi^{j} - f_{\alpha\beta}(\phi, \lambda) \operatorname{tr}(F^{\alpha}_{\mu\nu}(F^{\beta})^{\mu\nu}) - V(\phi, \lambda) + \dots$$

Coupling functions depend on: parameters $\lambda \in \mathcal{P}$, scalar fields $\phi \in \mathcal{M}_{\lambda}$

o $\mathcal{P} \times \mathcal{M}_{\{\lambda \in \mathcal{P}\}}$ parameter space and field space changing over it

number of fields, vevs of heavy fields, fluxes, topological data

→ possibly discrete or with many components

Tameness statement: $\mathcal{P} \times \mathcal{M}_{\lambda}$ and $g_{ij}, f_{\alpha\beta}, V, \dots$

Effective theory:

$$\mathcal{L} = \frac{1}{2}R - g_{ij}(\phi, \lambda) D_{\mu}\phi^{i}D^{\nu}\phi^{j} - f_{\alpha\beta}(\phi, \lambda) \operatorname{tr}(F^{\alpha}_{\mu\nu}(F^{\beta})^{\mu\nu}) - V(\phi, \lambda) + \dots$$

Coupling functions depend on: parameters $\lambda \in \mathcal{P}$, scalar fields $\phi \in \mathcal{M}_{\lambda}$

o $\mathcal{P} \times \mathcal{M}_{\{\lambda \in \mathcal{P}\}}$ parameter space and field space changing over it

number of fields, vevs of heavy fields, fluxes, topological data → possibly discrete or with many components

special 'tame' set special 'tame' function
$$\uparrow$$
 Tameness statement: $\mathcal{P} \times \mathcal{M}_{\lambda}$ and $g_{ij}, f_{\alpha\beta}, V, \ldots$

Tame Geometry

A brief introduction to o-minimal structures

A mathematical structure with finiteness

- Geometry: develop a mathematical framework for geometers:
 - Grothendieck's dream of a tame topology [Esquisse d'un programme]
 - remove pathologies that can occur in 'ordinary topology'

A mathematical structure with finiteness

- Geometry: develop a mathematical framework for geometers:
 - Grothendieck's dream of a tame topology [Esquisse d'un programme]
 - remove pathologies that can occur in 'ordinary topology'
- Logic: theory of o-minimal structures comes from model theory
 - built theory with polynomial equalities and inequalities over \mathbb{R} (with ordering ">") that has only decidable statements [Tarski]
 - Are there interesting extensions of this simplest structure?

A mathematical structure with finiteness

- Geometry: develop a mathematical framework for geometers:
 - Grothendieck's dream of a tame topology [Esquisse d'un programme]
 - remove pathologies that can occur in 'ordinary topology'
- Logic: theory of o-minimal structures comes from model theory
 - built theory with polynomial equalities and inequalities over \mathbb{R} (with ordering ">") that has only decidable statements [Tarski]
 - Are there interesting extensions of this simplest structure?
- → Resulting picture: → o-minimal structures define a tame topology
 - → give a generalization of real algebraic geometry
 - → strong finiteness properties intro book [van den Dries]

Recent lectures: Jacob Tsimerman (2021 Princeton lectures, 2022 Fields institute)

- Basic idea: specify collection S_n of tame sets $\mathcal{A} \subset \mathbb{R}^n$ and allowed tame functions $f: \mathbb{R}^n \to \mathbb{R}^m$
 - → tame manifolds, tame bundles,... a whole tame geometry

- Basic idea: specify collection S_n of tame sets $\mathcal{A} \subset \mathbb{R}^n$ and allowed tame functions $f: \mathbb{R}^n \to \mathbb{R}^m$
 - → tame manifolds, tame bundles,... a whole tame geometry
- Sets should define 'a structure' (logic):
 - finite unions, intersections, complements and products of tame sets are tame sets (logical operation... 'and', 'or', etc.)

- → Basic idea: specify collection S_n of tame sets $\mathcal{A} \subset \mathbb{R}^n$ and allowed tame functions $f: \mathbb{R}^n \to \mathbb{R}^m$
 - → tame manifolds, tame bundles,... a whole tame geometry
- Sets should define 'a structure' (logic):
 - finite unions, intersections, complements and products of tame sets are tame sets (logical operation... 'and', 'or', etc.)
 - ► linear projections of tame sets should be tame sets ('∃')

- → Basic idea: specify collection S_n of tame sets $\mathcal{A} \subset \mathbb{R}^n$ and allowed tame functions $f: \mathbb{R}^n \to \mathbb{R}^m$
 - → tame manifolds, tame bundles,... a whole tame geometry
- Sets should define 'a structure' (logic):
 - finite unions, intersections, complements and products of tame sets are tame sets (logical operation... 'and', 'or', etc.)
 - ► linear projections of tame sets should be tame sets ('∃')
 - sets defined by polynomials included (algebraic sets)

- → Basic idea: specify collection S_n of tame sets $\mathcal{A} \subset \mathbb{R}^n$ and allowed tame functions $f: \mathbb{R}^n \to \mathbb{R}^m$
 - → tame manifolds, tame bundles,... a whole tame geometry
- Sets should define 'a structure' (logic):
 - finite unions, intersections, complements and products of tame sets are tame sets (logical operation... 'and', 'or', etc.)
 - ► linear projections of tame sets should be tame sets ('∃')
 - sets defined by polynomials included (algebraic sets)
- O-minimal structure (a 'tame structure'):

Tameness assumption: tame sets S_1 of \mathbb{R} are finite unions of intervals and points

- → Basic idea: specify collection S_n of tame sets $\mathcal{A} \subset \mathbb{R}^n$ and allowed tame functions $f: \mathbb{R}^n \to \mathbb{R}^m$
 - → tame manifolds, tame bundles,... a whole tame geometry
- Sets should define 'a structure' (logic):
 - finite unions, intersections, complements and products of tame sets are tame sets (logical operation... 'and', 'or', etc.)
 - ► linear projections of tame sets should be tame sets ('∃')
 - sets defined by polynomials included (algebraic sets)

tame functions: are those whose graph is a tame set

tame functions: are those whose graph is a tame set

Example: polynomial function

is never a tame function

tame functions: are those whose graph is a tame set

Example: polynomial function

Non-Example: $\sin(x), x \in \mathbb{R}$ is never a tame function

Theorem: tame $f: \mathbb{R} \to \mathbb{R}$

split \mathbb{R} into finite number of intervals: f is either constant, or monotonic and continuous in each open interval

tame functions: are those whose graph is a tame set

Example: polynomial function

Non-Example: $\sin(x), x \in \mathbb{R}$ is never a tame function

Theorem: tame $f: \mathbb{R} \to \mathbb{R}$

split \mathbb{R} into finite number of intervals: f is either constant, or monotonic and continuous in each open interval

(1) finitely many minima and maxima; (2) tame tail to infinity

Examples of o-minimal structures

- Note: there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial

Examples of o-minimal structures

- Note: there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Some important examples:
 - structure generated by real polynomials: \mathbb{R}_{alg} $P(x_1,...,x_n)=0$

Examples of o-minimal structures

- Note: there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Some important examples:
 - · structure generated by real polynomials: \mathbb{R}_{alg} $P(x_1,...,x_n)=0$
 - Ralg plus exponential function: \mathbb{R}_{exp} $P(x_1,...,x_n,e^{x_1},...,e^{x_n})=0$ [Wilkie '96]

- \blacksquare Note: there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate the sets \rightarrow non-trivial
- Some important examples:
 - · structure generated by real polynomials: $\mathbb{R}_{\mathrm{alg}}$

$$P(x_1, ..., x_n) = 0$$

· \mathbb{R}_{alg} plus exponential function: \mathbb{R}_{exp} $P(x_1,...,x_n,e^{x_1},...,e^{x_n})=0$

$$P(x_1, ..., x_n, e^{x_1}, ..., e^{x_n}) = 0$$
[Wilkie '96]

 \mathbb{R}_{exp} plus restricted real analytic functions:

$$\mathbb{R}_{\mathrm{an,exp}}$$

[van den Dries, Miller '94]

- Note: there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Sets in $\mathbb{R}_{an,exp}$ given by finitely many equalities and inequalities:

$$P_k(x_1, ..., x_n, e^{x_1}, ..., e^{x_n}, f_1(x), ..., f_m(x)) = 0$$

$$\tilde{P}_l(x_1, ..., x_n, e^{x_1}, ..., e^{x_n}, \tilde{f}_1(x), ..., \tilde{f}_m(x)) > 0$$

- Note: there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Sets in $\mathbb{R}_{an,exp}$ given by finitely many equalities and inequalities:

$$P_k(x_1,...,x_n,e^{x_1},...,e^{x_n},f_1(x),...,f_m(x))=0$$

$$\tilde{P}_l(x_1,...,x_n,e^{x_1},...,e^{x_n},\tilde{f}_1(x),...,\tilde{f}_m(x))>0$$
 polynomial

- Note: there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Sets in $\mathbb{R}_{an,exp}$ given by finitely many equalities and inequalities:

$$P_k(x_1,...,x_n,e^{x_1},...,e^{x_n},f_1(x),...,f_m(x))=0$$

$$\tilde{P}_l(x_1,...,x_n,e^{x_1},...,e^{x_n},\tilde{f}_1(x),...,\tilde{f}_m(x))>0$$
 polynomial exponential

- Note: there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Sets in $\mathbb{R}_{an,exp}$ given by finitely many equalities and inequalities:

$$P_k(x_1,...,x_n,e^{x_1},...,e^{x_n},f_1(x),...,f_m(x))=0$$
 $\tilde{P}_l(x_1,...,x_n,e^{x_1},...,e^{x_n},\tilde{f}_1(x),...,\tilde{f}_m(x))>0$ polynomial exponential restricted analytic

- Note: there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Sets in $\mathbb{R}_{an,exp}$ given by finitely many equalities and inequalities:

$$P_k(x_1,...,x_n,e^{x_1},...,e^{x_n},f_1(x),...,f_m(x))=0$$

$$\tilde{P}_l(x_1,...,x_n,e^{x_1},...,e^{x_n},\tilde{f}_1(x),...,\tilde{f}_m(x))>0$$
 polynomial exponential restricted analytic of complex exponential:
$$e^z=e^r(\cos(\phi)+i\sin(\phi))\quad 0\leq\phi\leq c$$

- Note: there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate the sets → non-trivial
- Sets in $\mathbb{R}_{an,exp}$ given by finitely many equalities and inequalities:

$$P_k(x_1,...,x_n,e^{x_1},...,e^{x_n},f_1(x),...,f_m(x))=0$$
 $\tilde{P}_l(x_1,...,x_n,e^{x_1},...,e^{x_n},\tilde{f}_1(x),...,\tilde{f}_m(x))>0$ polynomial exponential restricted analytic

not tame in $\mathbb{R}_{an,exp}$: $\Gamma(x)$ on $(0,\infty)$; $\zeta(x)$ on $(1,\infty)$; error function

There is much more to say:

- Higher-dimensional tame functions and sets well understood
 - exists finite cell decomposition

There is much more to say:

- Higher-dimensional tame functions and sets well understood
 - exists finite cell decomposition

- Tameness used in many recent proofs of deep mathematics conjectures:
 - · Ax-Schanuel conjecture for Hodge structures [Bakker, Tsimerman '17]
 - Griffiths' conjecture [Bakker,Brunebarbe,Tsimerman '18]
 - · André-Oort conjecture [Pila,Shankar,Tsimerman '21]
 - → very active field connecting logic, number theory, and geometry

Tameness statement:

field space \mathcal{M} tame manifold potential $V(\phi_1, \phi_2)$ tame function

• Integrate out heavy ϕ_1 : $\mathcal{M}_{vac} = \left\{ \frac{\partial V}{\partial \phi_1} = 0 \right\} \cap \mathcal{M} \rightarrow \text{intersection of tame spaces}$

- Tameness statement:
- field space \mathcal{M} tame manifold potential $V(\phi_1,\phi_2)$ tame function

• Integrate out heavy ϕ_1 :

$$\mathcal{M}_{\text{vac}} = \left\{ \frac{\partial V}{\partial \phi_1} = 0 \right\} \cap \mathcal{M} \rightarrow \text{intersection of tame spaces}$$

$$V(\phi_1, \phi_2) \rightarrow V(\langle \phi_1 \rangle, \phi_2) \rightarrow \text{projection of tame function}$$

→ tameness classically preserved when lowering cut-off

- Tameness statement:
- field space \mathcal{M} tame manifold potential $V(\phi_1, \phi_2)$ tame function

- Integrate out heavy ϕ_1 :
- $\mathcal{M}_{\text{vac}} = \left\{ \frac{\partial V}{\partial \phi_1} = 0 \right\} \cap \mathcal{M} \rightarrow \text{intersection of tame spaces}$
- $V(\phi_1, \phi_2) \to V(\langle \phi_1 \rangle, \phi_2) \to \text{projection of tame function}$
- → tameness classically preserved when lowering cut-off

Tameness preserved at quantum level?

Tameness statement:

field space \mathcal{M} tame manifold potential $V(\phi_1, \phi_2)$ tame function

• Integrate out heavy ϕ_1 :

$$\mathcal{M}_{\text{vac}} = \left\{ \frac{\partial V}{\partial \phi_1} = 0 \right\} \cap \mathcal{M} \rightarrow \text{intersection of tame spaces}$$
 $V(\phi_1, \phi_2) \rightarrow V(\langle \phi_1 \rangle, \phi_2) \rightarrow \text{projection of tame function}$

→ tameness classically preserved when lowering cut-off

Tameness preserved at quantum level?

Rule out 'wild' potentials:

consider potential s.t. vacuum locus is an infinitely long spiral to the center

Tameness statement:

field space \mathcal{M} tame manifold potential $V(\phi_1, \phi_2)$ tame function

- Integrate out heavy ϕ_1 :
- $\mathcal{M}_{\text{vac}} = \left\{ \frac{\partial V}{\partial \phi_1} = 0 \right\} \cap \mathcal{M} \rightarrow \text{intersection of tame spaces}$ $V(\phi_1, \phi_2) \rightarrow V(\langle \phi_1 \rangle, \phi_2) \rightarrow \text{projection of tame function}$
- → tameness classically preserved when lowering cut-off

Tameness preserved at quantum level?

Rule out 'wild' potentials:

consider potential s.t. vacuum locus is an infinitely long spiral to the center

 \rightarrow cannot be tame, V not definable

linear project with infinitely many points

- Tameness statement:
- field space \mathcal{M} tame manifold potential $V(\phi_1,\phi_2)$ tame function

- Integrate out heavy ϕ_1 :
- $\mathcal{M}_{\text{vac}} = \left\{ \frac{\partial V}{\partial \phi_1} = 0 \right\} \cap \mathcal{M} \rightarrow \text{intersection of definable spaces}$ $V(\phi_1, \phi_2) \rightarrow V(\langle \phi_1 \rangle, \phi_2) \rightarrow \text{projection of definable function}$
- → tameness classically preserved when lowering cut-off

Rule out 'wild' potentials:

infinitely many vacua not compatible with tameness

Tameness statement:

field space \mathcal{M} tame manifold potential $V(\phi_1, \phi_2)$ tame function

- Integrate out heavy ϕ_1 :
- $\mathcal{M}_{\text{vac}} = \left\{ \frac{\partial V}{\partial \phi_1} = 0 \right\} \cap \mathcal{M} \rightarrow \text{intersection of definable spaces}$ $V(\phi_1, \phi_2) \to V(\langle \phi_1 \rangle, \phi_2)$ \to projection of definable function
- → tameness classically preserved when lowering cut-off

Rule out 'wild' potentials:

infinitely many vacua not compatible with tameness

many functions do not appear: $V(\phi) = \sin(\phi^{-1})$ $V(\phi) = \phi^8 \sin(\phi^{-1})$

$$V(\phi) = \sin(\phi^{-1})$$

$$V(\phi) = \phi^8 \sin(\phi^{-1})$$

→ no accumulation points of vacua

discussed by [Acharya, Douglas] 11

- Tameness statement:
- field space \mathcal{M} tame manifold potential $V(\phi_1,\phi_2)$ tame function

- Integrate out heavy ϕ_1 :
- $\mathcal{M}_{\text{vac}} = \left\{ \frac{\partial V}{\partial \phi_1} = 0 \right\} \cap \mathcal{M} \rightarrow \text{intersection of definable spaces}$ $V(\phi_1, \phi_2) \rightarrow V(\langle \phi_1 \rangle, \phi_2) \rightarrow \text{projection of definable function}$
- → tameness classically preserved when lowering cut-off

Rule out 'wild' potentials:

infinitely many vacua not compatible with tameness

recent suggestion by [Tachikawa] of QFT with scalar potential and undecidable statements is not tame

Tameness Conjecture

A new swampland conjecture

Tameness conjecture:

All effective theories valid below a fixed finite energy cut-off scale that can be consistently coupled to quantum gravity are labelled by a tame parameter space and must have scalar field spaces and coupling functions that are tame in an o-minimal structure.

A new swampland conjecture

Tameness conjecture:

All effective theories valid below a fixed finite energy cut-off scale that can be consistently coupled to quantum gravity are labelled by a tame parameter space and must have scalar field spaces and coupling functions that are tame in an o-minimal structure.

Refined version:

The relevant o-minimal structure is $\mathbb{R}_{an,exp}$.

Evidence for Tameness:

Supersymmetry + Strings

- **¬** Supergravity theories with N>2 supersymmetry in $D \ge 4$:
 - (1) scalar field spaces:

$$\mathcal{M} = \Gamma \backslash G / K$$

 $\Gamma \subset G_{\mathbb{Z}}$ is discrete symmetry group that is gauged

- **¬** Supergravity theories with N>2 supersymmetry in $D \ge 4$:
 - (1) scalar field spaces:

$$\mathcal{M} = \Gamma \backslash G / K$$
 $\Gamma \subset G_{\mathbb{Z}}$ is discrete symmetry group that is gauged

 \implies tame in $\mathbb{R}_{\mathrm{alg}}$ if Γ sufficiently large ('algebraic', e.g. $\Gamma=G_{\mathbb{Z}}$) seminal paper by [Bakker,Klingler,Tsimerman] '18

- **¬** Supergravity theories with N>2 supersymmetry in $D \ge 4$:
 - (1) scalar field spaces:

$$\mathcal{M} = \Gamma \backslash G / K$$
 $\Gamma \subset G_{\mathbb{Z}}$ is discrete symmetry group that is gauged

 \Longrightarrow tame in $\mathbb{R}_{\mathrm{alg}}$ if Γ sufficiently large ('algebraic', e.g. $\Gamma=G_{\mathbb{Z}}$) seminal paper by [Bakker,Klingler,Tsimerman] '18

(2) coupling functions (2-derivative action) \rightarrow tame in $\mathbb{R}_{alg} \subset \mathbb{R}_{an,exp}$ [TG,van Vliet] to appear

- **¬** Supergravity theories with N>2 supersymmetry in $D \ge 4$:
 - (1) scalar field spaces:

$$\mathcal{M} = \Gamma \backslash G / K$$
 $\Gamma \subset G_{\mathbb{Z}}$ is discrete symmetry group that is gauged

 \Longrightarrow tame in $\mathbb{R}_{\mathrm{alg}}$ if Γ sufficiently large ('algebraic', e.g. $\Gamma=G_{\mathbb{Z}}$) seminal paper by [Bakker,Klingler,Tsimerman] '18

- (2) coupling functions (2-derivative action) \rightarrow tame in $\mathbb{R}_{alg} \subset \mathbb{R}_{an,exp}$ [TG,van Vliet] to appear
- (3) parameter spaces: are they tame? check: sectrum/group ranks (e.g. choices for Γ , G) are finite in string compactifications \rightarrow discrete infinite sets are never definable

- Less supersymmetry: N=2 compactifications on Calabi-Yau threefolds

- Less supersymmetry: N=2 compactifications on Calabi-Yau threefolds
- Field space: complex structure deformations ${\cal M}$

Recall: Kähler metric from:
$$K(z)=-\log\int_Y\Omega\wedge\bar\Omega$$
 $N=2$ gauge coupling: $\mathcal N_{IJ}(z)$

- Less supersymmetry: N=2 compactifications on Calabi-Yau threefolds
- Field space: complex structure deformations ${\cal M}$

Recall: Kähler metric from:
$$K(z) = -\log \int_Y \Omega \wedge \bar{\Omega}$$
 derived from period integrals $N=2$ gauge coupling: $\mathcal{N}_{IJ}(z)$
$$\Pi^i = \int_{\Omega} \Omega$$

- Less supersymmetry: N=2 compactifications on Calabi-Yau threefolds
- Field space: complex structure deformations ${\cal M}$

Recall: Kähler metric from:
$$K(z) = -\log \int_Y \Omega \wedge \bar{\Omega}$$
 derived from period integrals $N=2$ gauge coupling: $\mathcal{N}_{IJ}(z)$
$$\Pi^i = \int_{\gamma_i} \Omega$$

- Also recently shown:
 - (a) Hodge star on $H^D(Y_D,\mathbb{C})$, period map are tame in $\mathbb{R}_{an,exp}$ [Bakker,Klingler,Tsimerman] '18
 - (b) period integrals themselves are tame in $\mathbb{R}_{an,exp}$ [Bakker,Mullane] '22 + [Bakker,Tsimerman] to appear

- Less supersymmetry: N=2 compactifications on Calabi-Yau threefolds
- Field space: complex structure deformations ${\cal M}$

Recall: Kähler metric from:
$$K(z) = -\log \int_Y \Omega \wedge \bar{\Omega}$$
 derived from period integrals $N=2$ gauge coupling: $\mathcal{N}_{IJ}(z)$
$$\Pi^i = \int_{\gamma_i} \Omega$$

→ Kähler metric/gauge coupling function on \mathcal{M} → tame maps in $\mathbb{R}_{\mathrm{an,exp}}$

- Less supersymmetry: N=2 compactifications on Calabi-Yau threefolds
- Field space: complex structure deformations ${\cal M}$

Recall: Kähler metric from:
$$K(z) = -\log \int_Y \Omega \wedge \bar{\Omega}$$
 derived from period integrals $N=2$ gauge coupling: $\mathcal{N}_{IJ}(z)$
$$\Pi^i = \int_{\gamma_i} \Omega$$

- Kähler metric/gauge coupling function on $\mathcal{M} \to \text{tame maps in } \mathbb{R}_{an,exp}$
- Note: period integrals have 'parameters' (e.g. mirror intersection numbers)
 - \rightarrow non-trivial \mathcal{P} : would need finiteness of Calabi-Yau manifolds

Consider (non-trivial) function with discrete symmetry:

$$f(x) = f(x+n)$$
, $n \in \mathbb{Z} \implies \text{not tame for } x \in \mathbb{R}$

<u>But:</u> gauge the symmetry - f(x) on interval $[0,1) \Longrightarrow$ can now be tame

Consider (non-trivial) function with discrete symmetry:

$$f(x) = f(x+n)$$
, $n \in \mathbb{Z} \implies \text{not tame for } x \in \mathbb{R}$

<u>But:</u> gauge the symmetry - f(x) on interval $[0,1) \Longrightarrow$ can now be tame

'No global symmetries': sufficiently large Γ in $\Gamma \backslash G/K$ [Cecotti]

Consider (non-trivial) function with discrete symmetry:

$$f(x) = f(x+n) , \quad n \in \mathbb{Z} \implies \text{not tame for } x \in \mathbb{R}$$

<u>But:</u> gauge the symmetry - f(x) on interval $[0,1) \Longrightarrow$ can now be tame

'No global symmetries': sufficiently large Γ in $\Gamma \backslash G/K$

[Cecotti]

- Involved: period integrals are complicated functions (e.g. hypergeom.)
 - → carefully 'mod out' monodromy symmetries

$$\vec{\Pi}(ze^{2\pi i}) = T \cdot \vec{\Pi}(z)$$

$$T^n \neq T$$

Consider (non-trivial) function with discrete symmetry:

$$f(x) = f(x+n) , \quad n \in \mathbb{Z} \implies \text{not tame for } x \in \mathbb{R}$$

<u>But:</u> gauge the symmetry - f(x) on interval $[0,1) \Longrightarrow$ can now be tame

'No global symmetries': sufficiently large Γ in $\Gamma \backslash G/K$

[Cecotti]

- Involved: period integrals are complicated functions (e.g. hypergeom.)
 - → carefully 'mod out' monodromy symmetries

$$\vec{\Pi}(ze^{2\pi i}) = T \cdot \vec{\Pi}(z)$$

<u>However:</u> quantities like the central charge $Z(z,Q)=e^{K/2}Q_i\Pi^i$ not T-invariant

 \rightarrow not tame in (z,Q): towers of BPS states of mass |Z(z,Q)| (not part of EFT)

Consider (non-trivial) function with discrete symmetry:

$$f(x) = f(x+n) , \quad n \in \mathbb{Z} \implies \text{not tame for } x \in \mathbb{R}$$

<u>But:</u> gauge the symmetry - f(x) on interval $[0,1) \Longrightarrow$ can now be tame

'No global symmetries': sufficiently large Γ in $\Gamma \backslash G/K$

[Cecotti]

- Involved: period integrals are complicated functions (e.g. hypergeom.)
 - → carefully 'mod out' monodromy symmetries

$$\vec{\Pi}(ze^{2\pi i}) = T \cdot \vec{\Pi}(z)$$

$$T^n \neq T$$

<u>However:</u> quantities like the central charge $Z(z,Q)=e^{K/2}Q_i\Pi^i$ not T-invariant

- \rightarrow not tame in (z,Q): towers of BPS states of mass |Z(z,Q)| (not part of EFT)
- → relevant to Distance conjecture

[TG,Palti,Valenzuela]

Some relations to other conjectures

Consider (non-trivial) function with discrete symmetry:

$$f(x) = f(x+n) , \quad n \in \mathbb{Z} \implies \text{not tame for } x \in \mathbb{R}$$

<u>But:</u> gauge the symmetry - f(x) on interval $[0,1) \Longrightarrow$ can now be tame

'No global symmetries': sufficiently large Γ in $\Gamma \backslash G/K$

[Cecotti]

- Involved: period integrals are complicated functions (e.g. hypergeom.)
 - → carefully 'mod out' monodromy symmetries

$$\vec{\Pi}(ze^{2\pi i}) = T \cdot \vec{\Pi}(z)$$

$$T^n \neq T$$

<u>However:</u> quantities like the central charge $Z(z,Q)=e^{K/2}Q_i\Pi^i$ not T-invariant

- \rightarrow not tame in (z,Q): towers of BPS states of mass |Z(z,Q)| (not part of EFT)
- → relevant to Distance conjecture

[TG,Palti,Valenzuela]

[TG,Lanza,Li]

→ Talk by Stefano Lanza

→ Type IIB/F-theory flux compactifications review: [Graña] [Kachru, Douglas] ...

background flux: $G_4 \in H^4(Y_4, \mathbb{Z})$ $\int_{Y_4} G_4 \wedge G_4 = \ell$ scalar potential: $V = C \int_{Y_4} \left(G_4 \wedge *G_4 - G_4 \wedge G_4 \right)$

vacuum condition: $*G_4 = G_4 \rightarrow \text{well-defined set of } N=0,1 \text{ vacua}$ with (partially) fixed moduli

→ Type IIB/F-theory flux compactifications review: [Graña] [Kachru, Douglas] ...

```
background flux: G_4 \in H^4(Y_4, \mathbb{Z}) \int_{Y_4} G_4 \wedge G_4 = \ell scalar potential: V = C \int_{Y_4} \left( G_4 \wedge *G_4 - G_4 \wedge G_4 \right) vacuum condition: *G_4 = G_4 \rightarrow \text{well-defined set of } N = 0,1 \text{ vacua with (partially) fixed moduli}
```

→ fix G_4 : scalar potential $V(z, \bar{z})$ is tame in $\mathbb{R}_{an, exp}$ → finitely many minimum loci [Bakker, TG, Schnell, Tsimerman] '21

→ Type IIB/F-theory flux compactifications review: [Graña] [Kachru, Douglas] ...

background flux:
$$G_4 \in H^4(Y_4, \mathbb{Z})$$
 $\int_{Y_4} G_4 \wedge G_4 = \ell$ scalar potential: $V = C \int_{Y_4} \left(G_4 \wedge *G_4 - G_4 \wedge G_4 \right)$ vacuum condition: $*G_4 = G_4 \rightarrow \text{well-defined set of } N = 0,1 \text{ vacua with (partially) fixed moduli}$

→ G_4 as parameter: $G_4 \in \mathcal{P}$ takes value on lattice $H^4(Y_4, \mathbb{Z})$ → worst thing for tameness

→ Type IIB/F-theory flux compactifications review: [Graña] [Kachru, Douglas] ...

```
background flux: G_4 \in H^4(Y_4, \mathbb{Z}) \int_{Y_4} G_4 \wedge G_4 = \ell scalar potential: V = C \int_{Y_4} \left( G_4 \wedge *G_4 - G_4 \wedge G_4 \right) vacuum condition: *G_4 = G_4 \rightarrow \text{well-defined set of } N = 0,1 \text{ vacua with (partially) fixed moduli}
```

- G_4 as parameter: $G_4 \in \mathcal{P}$ takes value on lattice $H^4(Y_4, \mathbb{Z})$ → worst thing for tameness
tadpole helps! → finiteness related to compactness of Y_4 (gravity)

→ Type IIB/F-theory flux compactifications review: [Graña] [Kachru, Douglas] ...

```
background flux: G_4 \in H^4(Y_4, \mathbb{Z}) \int_{Y_4} G_4 \wedge G_4 = \ell scalar potential: V = C \int_{Y_4} \left( G_4 \wedge *G_4 - G_4 \wedge G_4 \right) vacuum condition: *G_4 = G_4 \rightarrow \text{well-defined set of } N = 0,1 \text{ vacua with (partially) fixed moduli}
```

- G_4 as parameter: $G_4 \in \mathcal{P}$ takes value on lattice $H^4(Y_4, \mathbb{Z})$ → worst thing for tameness
tadpole helps! → finiteness related to compactness of Y_4 (gravity)

→ Type IIB/F-theory flux compactifications review: [Graña] [Kachru, Douglas] ...

background flux:
$$G_4 \in H^4(Y_4, \mathbb{Z})$$
 $\int_{Y_4} G_4 \wedge G_4 = \ell$ scalar potential: $V = C \int_{Y_4} \left(G_4 \wedge *G_4 - G_4 \wedge G_4 \right)$ vacuum condition: $*G_4 = G_4 \rightarrow \text{well-defined set of } N = 0,1 \text{ vacua with (partially) fixed moduli}$

- → G_4 as parameter: $G_4 \in \mathcal{P}$ takes value on lattice $H^4(Y_4, \mathbb{Z})$ → worst thing for tameness tadpole helps! → finiteness related to compactness of Y_4 (gravity)
- tameness (and finiteness) of locus of self-dual fluxes now part
 of general theorem [Bakker,TG,Schnell,Tsimerman] '21

Evidence for Tameness:

Perturbative QFT

General local QFT (renormalizable/EFT with cutoff)

 ℓ -loop amplitude $\mathcal{A}_{\ell}(p,m)$

independent external momenta p_i masses of particles in the loop m_{lpha}

General local QFT (renormalizable/EFT with cutoff)

 ℓ -loop amplitude $\mathcal{A}_{\ell}(p,m)$

independent external momenta \mathcal{P}_i masses of particles in the loop m_{lpha}

amplitude is a map: $\mathcal{A}_{\ell}: \mathfrak{M} \times \mathfrak{P} \to [0,1]$

space of momenta parameters: masses, vertices

General local QFT (renormalizable/EFT with cutoff)

 ℓ -loop amplitude $\mathcal{A}_{\ell}(p,m)$

independent external momenta \mathcal{P}_i masses of particles in the loop m_{lpha}

amplitude is a map: $\mathcal{A}_{\ell}: \mathfrak{M} \times \mathfrak{P} \to [0,1]$

space of momenta parameters: masses, vertices

- show that maps \mathcal{A}_{ℓ} are tame in $\mathbb{R}_{\mathrm{an,exp}}$

[Douglas, TG, Schlechter] in preparation

→ Talk by Lorenz Schlechter

- amplitudes are composed of finitely many Feynman integrals

$$\mathcal{A}_{\ell} = \Big|\sum_{j} I_{\ell,j}\Big|^2 \qquad j = 1, \ldots, N_{\mathrm{graphs},\ell}$$

amplitudes are composed of finitely many Feynman integrals

$$\mathcal{A}_{\ell} = \Big|\sum_{j} I_{\ell,j}\Big|^2 \qquad j = 1, \ldots, N_{\mathrm{graphs},\ell}$$

- Basic idea: Feynman integrals are tame by relating them to period integrals of some auxiliary compact geometry $Y_{\rm graph}$

amplitudes are composed of finitely many Feynman integrals

$$\mathcal{A}_{\ell} = \Big|\sum_{j} I_{\ell,j}\Big|^2 \qquad j = 1, \ldots, N_{\mathrm{graphs},\ell}$$

- Basic idea: Feynman integrals are tame by relating them to period integrals of some auxiliary compact geometry $Y_{\rm graph}$

$$\mathfrak{M} imes \mathfrak{P} o \mathcal{M}_{\operatorname{graph}} \;, \quad (p,m) \mapsto z$$
 moduli space of Y_{graph}

amplitudes are composed of finitely many Feynman integrals

$$\mathcal{A}_{\ell} = \Big|\sum_{j} I_{\ell,j}\Big|^2 \qquad j = 1, \ldots, N_{\mathrm{graphs},\ell}$$

- Basic idea: Feynman integrals are tame by relating them to period integrals of some auxiliary compact geometry $Y_{\rm graph}$

$$\mathfrak{M} imes \mathfrak{P} o \mathcal{M}_{\mathrm{graph}} \;, \quad (p,m) \mapsto z$$
 moduli space of Y_{graph}

$$I(p,m) = \int \left(\prod_{r=1}^{L} \frac{\mathrm{d}^{d}k}{i\pi^{d/2}}\right) \left(\prod_{j=1}^{n} \frac{1}{D_{j}^{v_{j}}}\right) \longrightarrow I(z) = \int_{\gamma} \Omega$$

amplitudes are composed of finitely many Feynman integrals

$$\mathcal{A}_{\ell} = \Big|\sum_{j} I_{\ell,j}\Big|^2 \qquad j = 1, \ldots, N_{\mathrm{graphs},\ell}$$

- Basic idea: Feynman integrals are tame by relating them to period integrals of some auxiliary compact geometry $Y_{\rm graph}$

• Use: period integrals are tame maps in $\mathbb{R}_{\mathrm{an,exp}}$

[Bakker, Mullane] '22 + [Bakker, Tsimerman] to appear

- Tame geometry and o-minimal structures are omnipresent in effective field theories arising from string theory
 - ⇒ strong finiteness properties
 - ⇒ general enough for non-supersymmetric situations
 - → a structure for the real world

- Tame geometry and o-minimal structures are omnipresent in effective field theories arising from string theory
 - ⇒ strong finiteness properties
 - ⇒ general enough for non-supersymmetric situations
 - → a structure for the real world
- Much non-trivial evidence: e.g. tameness theorem for self-dual fluxes vacua
 - \rightarrow proof that vacuum landscape is in $\mathbb{R}_{\mathrm{an,exp}}$

- Tame geometry and o-minimal structures are omnipresent in effective field theories arising from string theory
 - ⇒ strong finiteness properties
 - ⇒ general enough for non-supersymmetric situations
 - → a structure for the real world
- Much non-trivial evidence: e.g. tameness theorem for self-dual fluxes vacua
 - \rightarrow proof that vacuum landscape is in $\mathbb{R}_{\mathrm{an,exp}}$
- n-loop QFT amplitudes are tame: tameness preserved at quantum level

- Tame geometry and o-minimal structures are omnipresent in effective field theories arising from string theory
 - ⇒ strong finiteness properties
 - ⇒ general enough for non-supersymmetric situations
 - → a structure for the real world
- Much non-trivial evidence: e.g. tameness theorem for self-dual fluxes vacua
 - \rightarrow proof that vacuum landscape is in $\mathbb{R}_{\mathrm{an,exp}}$
- n-loop QFT amplitudes are tame: tameness preserved at quantum level
- Combine other conjectures with Tameness Conjecture:
 - tameness conjecture + distance conjecture [TG,Lanza,Li] tameness conjecture + swampland conjectures ? [TG,Lanza,van Vliet] in progress

Thanks!